| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • You already know Dokkio is an AI-powered assistant to organize & manage your digital files & messages. Very soon, Dokkio will support Outlook as well as One Drive. Check it out today!

View
 

Continuação dos trabalhos de matemática EF10

Page history last edited by PBworks 15 years, 11 months ago
 
Universidade Federal do Rio Grande do Sul
Faculdade de Educação
Curso de Graduação a distância em Pedagogia – Licenciatura
Eixo 4 – Representação do mundo pela matemática
Professora: Marlusa Benedetti da Rosa
Aluna: Darlene Sabany
Atividade : EF 14

 

 

 

Sala de aula
1.      Distribuir quadrados do mesmo tamanho para cada aluno e explicar. Estas figuras que vocês têm, representam a sala de aula.Conforme eu for solicitando vocês irão recontando e pintando para separarem os espaços de sala de aula de cada grupo:     
 
 
 
 

 
  1. Vamos juntas as turmas A11 e A12 em uma mesma sala, cada turma ficará em uma metade da sala. Divida pintando com lápis de cor de duas cores claras e depois recorte e cole a segunda folha no item correto:
 
A11: verde
A12: laranja

  

 
  1. Agora vamos separa o espaço das meninas (♀) dos meninos (♂) de cada turma, fazendo um desenho para representar os meninos e as meninas:
  
 

  
  1. Agora vamos separar o espaço os gremistas dos colorados e pintar os desenhos de todos os gremistas de azul e dos colorados de vermelho, após vamos recortar:   

 

 

  1. Agora vamos colar cada uma das figuras recortadas:

 

 

 

    1. 1/1 o espaço da sala de aula:
    2. 1/2 o espaço ocupado pela tua turma:
    3. 1/4 o espaço ocupado pelos (as) meninos (as)da tua turma:
    4. 1/8 o espaço ocupado pelos (as) meninos (as) da tua turma que são gremistas (colorados):

 

 
  1. Agora responda:
 
    1. Como é representada a sala intera:
    2. Como é representada a sala dividida por dois:
    3. Como é representada a sala dividida por quatro:
    4. Como é representada a sala dividida por oito:

 

 
 
  1. Faça o desenho e depois escreva:

 

 

 

  1. Quantas partes nos temos de gremistas? Como vamos fazer a representação?
  2. O gremistas estão ocupando toda a sala? Que parte? Como representamos isto?
  3. Quantas partes nos temos dos meninos da A11? Como representamos isto?
  4. Quantas partes nos temos de meninas coloradas ? Como nos representamos isto ?
  5. 1/2 ocupado pela A12 é igual a 4/8 ocupado pelos colorados ?

 

 
 

 

 

 

 

 

 
Universidade Federal do Rio Grande do Sul
Faculdade de Educação
Curso de Graduação a distância em Pedagogia – Licenciatura
Eixo 4 – Representação do mundo pela matemática
Professora: Marlusa Benedetti da Rosa
Aluna: Darlene Sabany
Atividade : EF 13

 

 

 

  

 

Estimativa

 

 

 

Já compraram com alguém alguma coisa a metro? O quê? Tecido? Fita? Papel? Fio de luz? Corda?

Vamos pegar uma fita métrica e ver quanto é um metro. Medir um pedaço de madeira de um metro.

Vamos primeiro medir a mesa da professora com a fita e após com o pedaço de madeira e mostrando que cada pedaço de madeira tem um metro.

Colocar a tabela no quadro e explicar: porta (altura/ comprimento ), estante(altura/comprimento),janela(altura/ comprimento),sala (comprimento/ largura), armário (largura/altura) .                                

Após é solicitado que cada grupo meça um dos itens com a fita métrica e compare com as estimativas dos colegas;

 

 

 
 

 

 

 Cada grupo recebe uma tabela com os desenhos e desenha o número de metros que o grupo acha que tem.

 

 

 

 

 
Considerações finais
 
Durante a atividade os questionamentos que podem surgir são com relação a o que é largura, comprimento e altura. Mostrar que na tabela estas informações estão marcadas com setas vermelhas. Outra dúvida que pode surgir é na hora de medir saber como representar quando não for um metro inteiro. Mostrar aos alunos os números e fazer a contagem com eles. Estou propondo esta atividade para que os alunos comecem a ter uma noção de medidas para poderem estimar valores. Vou verificar o que meu aluno aprendeu observando a realização das tarefas e o preenchimento da tabela.

 

 

 
Universidade Federal do Rio Grande do Sul
Faculdade de Educação
Curso de Graduação a distância em Pedagogia – Licenciatura
Eixo 4 – Representação do mundo pela matemática
Professora: Marlusa Benedetti da Rosa
Aluna: Darlene Sabany
Atividade : EF 12

 

 

Navegando pelo site Google.maps (http://maps.google.com.br/)

 

 

Eu já conhecia o site. Quando comecei o curso entrei para tentar fazer o caminho de casa até a escola, mas não consegui. A internet era discada e isto dificultava. Agora aproveitei a indicação para viajar virtualmente um pouco, achei o local onde eu moro, fui ver a casa da minha mãe em Pelotas, da minha irmã em São Paulo. Vi os Lençóis Maranhenses, que enorme extensão eles ocupam. E aproveitei para mudar o mapa do primeiro trabalho que fiz Atividade 02: Na Estrada .

 

 

 


Exibir mapa ampliado

 

 

 

 

 

 

 

 
Universidade Federal do Rio Grande do Sul
Faculdade de Educação
Curso de Graduação a distância em Pedagogia – Licenciatura
Eixo 4 – Representação do mundo pela matemática
Professora: Marlusa Benedetti da Rosa
Aluna: Darlene Sabany
Atividade : EF 11

 

 

 

Explique o que é um problema não-convencional segundo o texto. Elabore um exemplo.

 

 

Segundo o texto um problema não convencional é aquele que está fora da lógica dos problemas historicamente apresentados pelos professores aos seus alunos, ou seja, apenas um exercício de fixação, uma aplicação do conteúdo já trabalhado. Um problema não-convencional pode ser sem solução, ter mais de uma solução, ter excesso de dados, ser um problema de lógica, ser um problema que se transforma em outros problemas, problema de estratégia, ou seja, é uma situação nova, desconhecida que o aluno tem de passar. 
 
 
 
Um exemplo de problema com excesso de dados :
 
 
 
Um relógio adianta 4 minutos a cada hora. Se for considerado que o adiantamento começou a partir das 4 horas e que agora são 6 horas em dois relógios diferentes, um na parede e outro no pulso. Que horário o relógio estará marcando quando a hora correta for 8 h e 30 mim?
 
 
 
 
 
 
Universidade Federal do Rio Grande do Sul
Faculdade de Educação
Curso de Graduação a distância em Pedagogia – Licenciatura
Eixo 4 – Representação do mundo pela matemática
Professora: Marlusa Benedetti da Rosa
Aluna: Darlene Sabany
Atividade : EF 10
Como desenvolver a noção de fração com os alunos da série com a qual você trabalha?
 
            A turma a qual eu estou acompanhando é uma turma de C10 (1º ano). Nesta fase pode ser trabalhada as primeiras noções de fração : inteiro, 1/2, 1/3, 1/4, sem a representação, apenas de forma oral e com atividades práticas. Segundo o encarte especial da Revista Nova Escola de abril deste ano “O uso social permite aos alunos recorrer a conhecimentos extra-escolares como apoio para analisar os resultados e controlá-los, ao mesmo tempo em que será fonte de outros problemas e o início da sistematização de novas relações. Iracy Paulina”
            1. Apresentar para a turma uma receita de pizza com os seguintes ingredientes:
Um pouco de leite
Uma quantidade boa de óleo
Alguns  ovos
Um pouquinho de queijo ralado
Sal
Um pouco de farinha de trigo
Um bocado de fermento em pó
 
 
2. Perguntar se está tudo certo, se a nossa pizza vai ficar boa. Questionar o que está faltando na receita. Imaginar quais seriam as quantidades a serem usadas de cada ingrediente.
 
3. Apresentar a receita certa, fazer a leitura e pedir que os alunos copiem no caderno usando desenhos :
 
 
Massa para pizza de liquidificador
 
INGREDIENTES:
2 xícaras de leite
1/4 de xícara de óleo
3 ovos
3 colheres de queijo ralado
1/2 colher de sal
2 e 1/2 xícaras de farinha de trigo
1 colher de fermento em pó
 
Tempo : 20min
Rendimento: 3 porções
 
MODO DE PREPARO:
 
Bata no liquidificador primeiramente os ingredientes líquidos e vá acrescentando os sólidos aos poucos, despeje a massa em forma redonda untada com margarina e farinha recheie a gosto e leve para assar em forno médio pré-aquecido por 20 min.
 
Divida a massa em 3 porções
 
 
4. Conversar com os alunos sobre as frações de ingredientes, para que eles consigam representar graficamente, solicitar outros exemplos. Perguntar se nós dividirmos em três partes como vai ficar a representação da pizza, e se nós comermos uma parte quanto sobra.  
 
5. Apresentar um encarte de pizzaria com várias opções de tamanho e sabores.
 
 
Brotinho: um sabor
Pizza de 30 cm: dois sabores
Pizza de 35 cm: três sabores
Pizza de 45 cm: quatro sabores
 
 
 
 
 
 
 
 
6. Pedir que cada grupo de alunos escolha um tamanho de pizza, após, de acordo com o tamanho, escolha os sabores ou sabor e faça a representação da sua pizza em um prato de papelão, desenhando ou colando figuras.     
 
7. Após a realização da tarefa discutir com os alunos em quantos pedaços o primeiro grupo dividiu a sua pizza, em dois, como dizemos isto: uma metade ou um meio, fazer o mesmo com os outros desenhos de pizza. Por último perguntar em quantos pedaços eu divido a pizza se eu quero um meio, em quantos se eu quero um terço, em quantos se eu quero um quarto e em quantos eu divido se eu quero um inteiro. 
 
 
 
Fontes:
Revista Nova Escola de abril de 2008
 
 
 

 

Comments (7)

Anonymous said

at 10:14 am on Jun 29, 2008

Atividade EF10: Darlene, gostei da proposta de trabalho com frações. Apesar de serem alunos do primeiro ano, é possível trabalhar com frações da forma como mencionaste. Gostaria que colocasses a referência das duas propagandas de pizzarias que trazes em tua postagem. Beijos, Damiana.

Anonymous said

at 10:14 am on Jun 29, 2008

Atividade EF11: Darlene, interessante a proposta de problema não-convencional de tua atividade. Creio que seria um pouco complicado de trabalhar esse “problema” com teus alunos do primeiro ano, mas poderias fazer algumas adaptações ou trabalhar com outra turma. Beijos, Damiana.

Anonymous said

at 10:15 am on Jun 29, 2008

Atividade EF12: Darlene, gostei da forma como fizeste essa atividade, relatando tuas dificuldades e como pudeste rever uma atividade já feita com o Google.maps. A canção da Ana Carolina ilustra bem esse caminho percorrido. Beijos, Damiana.

Anonymous said

at 11:36 pm on Jul 5, 2008

Continuação EF10

Ok Darlene! Gostei do trabalho com medidas apresentado.

Anonymous said

at 11:45 pm on Jul 5, 2008

Atividade EF13
Olá Darlene! Você escolheu trabalhar com estimativa a partir de unidades de comprimento. A proposta está adequada ao que foi solicitdo. Você apresentou questionamentos e observações pertinentes.

Anonymous said

at 4:38 pm on Jul 21, 2008

Atividade EF14
Darlene a idéia de trabalhar com a representação da sala de aula para operar com frações é interessante, porém fração representa o todo dividido em partes iguais. Então pergunto. O número de meninos é igual ao número de meninas, o de gremistas e colorados também é igual. Gostaria que refletisse sobre os critérios para a divisão da turma.

Anonymous said

at 4:41 pm on Jul 21, 2008

Darlene.Chegou o momento das despedidas. Quero dizer que foi muito bom acompanhar tua caminhada neste semestre. A cada atividade postada novos conhecimentos brotavam. Penso que durante esse período plantamos a sementinha do conhecimento matemático, agora cabe a você fazê-la germinar e dar frutos junto aos seus alunos. Sei que nem tudo foi maravilhoso: muitas noites de sono perdido, a falta de tempo para cumprir os prazos, a angústia de um comentário não compreendido ou as trapalhadas da professora. Tenha a certeza que aprendi muito com você. Felicidade e sucesso nesta profissão maravilhosa são os votos da professora Marlusa.

You don't have permission to comment on this page.